一、工程概况
内蒙某煤化工企业在生产过程中排放大量高盐废水,设计采用高级氧化 化学软化 多介质过滤 超滤 低压反渗透进行处置,低压反渗透清液回用于生产,反渗透浓缩液采用纳滤进行分盐。其中,纳滤清液主要含有氯化钠和硝酸钠,纳滤浓缩液含有氯化钠、硝酸钠和硫酸钠3种盐分。纳滤清液及浓液再分别用120〜160bar的高压反渗透进行高倍浓缩,浓缩液分别进行热法分质结晶。蒸发系统进水水质状况见表1。
纳滤浓液高倍浓缩液蒸发段设计处理水量10t/h,废水tds8.5%,氯化钠3%,硫酸钠5%,硝酸钠0.5%。设计采用mvr蒸发 分质结晶处理,分别获取氯化钠(94.5%)、硫酸钠(98%)、硝酸钠结晶盐(90%)。由于废水cod较高,需考虑在蒸发前进一步降低cod,防止有机物影响结晶。
纳滤清液高倍浓缩液蒸发段设计的处理水量为15t/h,废水tds6.8%,氯化钠5.4%,硫酸钠0.1%,硝酸钠1.3%。设计采用mvr蒸发 分质结晶处理,分别获取氯化钠(94.5%)、硫酸钠(98%)、硝酸钠(90%)结晶盐。
二、蒸发分质结晶原理
本项目蒸发主要物料为氯化钠、硫酸、硝酸钠混合废水,不同温度下的3种盐分溶解度如图1。从图1中可以看出,随温度升高,氯化钠溶解度变化不大,硝酸钠溶解度一直升高至63%以上;硫酸钠溶解度不断上升,但温度超过40℃,其溶解度稳定在30%左右,并且有所下降。由此可知,氯化钠和硫酸钠适合采用热法结晶分离,硝酸钠适合蒸发饱和后冷却结晶分离。
不同浓度下的盐溶液沸点如表2,从表2中可以看出,饱和氯化钠溶液沸点升为9℃,相应饱和硫酸钠溶液沸点升为3℃,饱和硝酸钠溶液沸点升为25℃。
因此,对于氯化钠和硫酸钠蒸发系统,物料沸点升不超过10℃,蒸汽压缩机温升为15〜17℃,可以满足蒸发浓缩结晶的需求。但当硝酸钠累积,浓度不断升高引起沸点超过115℃,需要采用蒸汽(>140%)加热的单效蒸发器进行蒸发浓缩结晶。
对于氯化钠和硫酸钠的混合溶液蒸发系统,随着浓缩倍数增大,两者逐渐达到共饱和而产假结晶杂盐。通过绘制共饱和曲线可知,蒸发温度为50℃时,m(nacl):m(na2so4)=4.7:1,蒸发温度为100℃时,m(nacl):m(na2so4)=5.9:1。利用该比例的变化,在高温蒸发下结晶分离硫酸钠,提高m(nacl):m(na2so4)数值至5.9左右,而后低温蒸发分离氯化钠,使得两者比例降至4.7左右。由此往复,可分离氯化钠和硫酸钠。
对于氯化钠和硝酸钠的混合溶液蒸发系统,氯化钠和硝酸钠溶解度差异巨大,蒸发浓缩过程中,氯化钠会首先饱和析出,并且溶解度随温度变化不大。而硝酸钠溶解度随温度变化较大。设计采用热结晶法分离氯化钠,固液分离母液降温冷却分离硝酸钠。氯化钠和硝酸钠分离难度较低。
三、纳滤浓液高倍浓缩液蒸发系统设计
本系统进水水源为高盐废水,废水tds8.5%,氯化钠3%,硫酸钠5%,硝酸钠0.5%。设计处理量为10t/h,设计蒸发量为9.5t/h。本系统工艺流程图如图2。
高浓度盐溶液由进料泵加压后经过二级换热器使物料温度升高至85〜90%,而后进入强制加热器内。强制加热器管内的物料与管外加热蒸汽换热使原料升温至95~100℃,升温后的物料在分离器进行闪蒸蒸发,蒸发产生的水蒸气夹带部分液滴经过旋流除雾器分离形成二次蒸汽。二次蒸汽经压缩机升温后与蒸发器内物料换热,蒸发器内物料持续蒸发。本系统二次蒸汽放出潜热形成冷凝水。冷凝水经汇集后进入换热器与原水换热,利用其余热后排出系统进行回用。
由此原料经降膜蒸发和强制循环蒸发被不断蒸发浓缩至盐分饱和,将浓缩后的料液排出蒸发系统,进入硫酸钠稠厚器内,硫酸钠结晶盐在稠厚器下部沉积,下料至离心机内进行固液分离。硫酸钠离心母液(氯化钠25.9%,硫酸钠4.4%,5.9:1)部分返回强制循环蒸发系统,部分输至氯化钠单效蒸发系统,抽真空以维持蒸发温度40〜50℃,低温蒸发结晶氯化钠,氯化钠经离心分离,离心母液(氯化钠24.3%,硫酸钠5.2%,4.7:1)返回硫酸钠蒸发系统,高温蒸发结晶硫酸钠。
硝酸钠在强制循环蒸发系统内不断累积,当硝酸钠浓度累积至15%〜20%时,回流母液引起沸点升高,换热效率下降。氯化钠母液罐排出部分母液去往纳滤清液高倍浓缩液蒸发系统,蒸发分离氯化钠和硝酸钠。
蒸发过程中控制各组分浓度及比例,偏离共饱和曲线进行蒸发结晶,确保结晶盐纯度为90%〜95%。氯化钠和硫酸钠经洗盐后,结晶盐纯度提升至95%以上,产品外运销售,洗盐液返回蒸发系统。工艺设计首先确保各段蒸发量满足,控制母液回流量来控制各部分的盐组分,以维持系统稳定运行。
四、纳滤清液高倍浓缩液蒸发系统设计
系统进水水源为高盐废水,原废水水量15t/h,tds6.8%,氯化钠5.4%,硫酸钠为0.1%,硝酸钠1.3%(图3)。
纳滤浓液硫酸钠蒸发系统向系统输入250kg/h母液,主要含有氯化钠61kg,硫酸钠13kg,硝酸钠50kg。经混合后,进入本系统的废水tds7.5%,氯化钠5.71%,硫酸钠0.18%,硝酸钠1.61%。系统设计处理量为15.5t/h,设计蒸发量为15t/h。
高浓度盐溶液由进料泵加压后经过二级换热器使物料温度升高至85〜90℃,而后进入强制加热器内。强制加热器管内的物料与管外加热蒸汽换热使原料升温至95~100℃,升温后的物料在分离器进行闪蒸蒸发,蒸发产生的水蒸气夹带部分液滴经过旋流除雾器分离形成二次蒸汽。二次蒸汽经压缩机升温后与蒸发器内物料换热,蒸发器内物料持续蒸发。本系统二次蒸汽放出潜热形成冷凝水。冷凝水经汇集后进入换热器与原水换热,利用其余热后排出系统进行回用。
由此原料经降膜蒸发和强制循环蒸发被不断蒸发浓缩至氯化钠饱和,硝酸钠不断被浓缩至浓度40%〜50%,蒸发沸点升至110℃左右,将浓缩后的氯化钠饱和料液排出蒸发系统,固液混合物进入单效蒸发器内,部分料液返回强制循环蒸发段继续浓缩。
单效蒸发段维持高温蒸发,物料沸点为120〜125℃,氯化钠不断饱和析出,硝酸钠也得到浓缩至饱和状态。由稠厚器下料至离心机内进行固液分离。氯化钠离心母液输至冷却稠厚器,降温至20〜40℃低温结晶硝酸钠,硝酸钠经离心分离,离心母液返回单效蒸发系统,高温蒸发结晶氯化钠。
硫酸钠在单效蒸发系统内不断累积,当硫酸钠浓度累积至4%时,回流母液引起氯化钠和硫酸钠共结晶,影响结晶盐品质。硝酸钠母液罐排出部分母液(含3种盐分)去往超滤进水池,而后进去纳滤段分盐。
蒸发过程中控制各组分浓度及比例,偏离共饱和曲线进行蒸发结晶,确保结晶盐纯度为90%〜95%。
氯化钠和硝酸钠经洗盐后,结晶盐纯度提升至95%以上,产品外运销售,洗盐液返回蒸发系统。硝酸钠浓度较低在本阶段第一轮循环中不能结晶,含硫酸钠母液中的硝酸钠循环回到本阶段方可结晶,结晶盐量暂根据含盐量计算。工艺设计首先确保各段蒸发量满足,控制母液回流量来控制各部分的盐组分,以维持系统稳定运行。
五、结论
1)针对煤化工高盐废水的水质特征,采用膜法分盐与热法分盐相结合的方式进行综合处理,采用分质结晶技术从废水中回收工业级的氯化钠、硫酸钠及硝酸钠结晶盐。
2)热法结晶工艺设计关键在于根据盐分共饱和曲线,在不同温度下蒸发分离不同盐分。采用两套蒸发系统,饱和母液互相输送可有效避开饱和曲线,确保分盐纯度。