我国能源结构中,煤炭仍将长期作为我国的主要能源,燃煤发电站在电力供应格局中占主导地位的状况短期内不会改变。燃煤电厂使用的脱硫系统中,近90%采用石灰石-石膏湿法烟气脱硫技术,因脱硫系统产生的废
水呈弱酸性且悬浮物和盐含量极高,并含有多种重金属,是电厂废
水处理中的难点与重点。由于脱硫废
水污染成分的特殊性、复杂性和强腐蚀性,这部分废
水能否达标处理成为制约燃煤电厂实现废
水“零排放”的关键。伴随«
水污染防治行动计划»(“
水十条”)、«控制污染物排放许可制实施方案»、«火电厂污染防治技术政策»等一系列环保政策法规的相继出台,作为耗
水大户的燃煤电厂,在
水资源约束与排放限制方面的压力陡然上升:环保政策要求2005年后新建电厂的环境评估等级按照电厂废
水“零排放”要求进行设计,同时,
水源地保护区及西北等富煤少
水地区的电厂也相继要求实施废
水零排放处理。我国的零排放技术自2009年开始进行工程实践,截止到2015年汉川电厂脱硫废
水零排放工程建设时,国内的零排放工程案例较少,包括广东河源电厂和华能长兴电厂等,但整体
水平仍处于技术起步和探索阶段,零排放系统的设计和运行经验不够成熟。国内已投运的两个电厂零排放项目均存在投资与运行费用过高的问题,而且淡
水回收率低,产出杂盐副产物无法处置,存在二次污染风险。这些问题限制了零排放技术的发展应用,因此,同时实现燃煤电厂废
水与杂盐的高效回收是电厂废
水零排放技术的关键瓶颈问题。
目前,多数燃煤电厂以“废水分级、梯级利用、高盐废水最少化”的原则进行全厂水资源综合利用优化,脱硫废水成为火电厂最终末端高盐废水。一般根据脱硫废水的水质和水量情况进行分段处理,构成一套完整的脱硫废水零排放处理系统,其处理过程主要包括预处理,浓缩减量,末端固化三个部分。其中浓缩减量部分是最主要的环节,结合废水量、含盐量大小选择合适的浓缩设备,提高盐浓度,实现废水减量化,降低后续末端固化的投资和运行费用。目前,浓缩减量技术比较成熟的技术包括膜法浓缩和热法浓缩,其中膜法浓缩是现阶段的主流技术。浓缩减量处理后最终形成了高含盐浓水,这类废水通常采用末端固化处理。现阶段,脱硫废水末端固化的主流技术有蒸发塘、蒸发结晶、烟气蒸发干燥等。蒸发塘设备也具有占地面积较大、基建费用较高、蒸发的水分无法充分回收利用、蒸发过程中污染物易进入空气造成污染等缺点,从而限制了蒸发塘技术的广泛应用。近两年成为热点的烟气蒸发干燥技术利用烟气热量将末端废水进行汽化,固状形态物析出后随烟气进入除尘器被捕集脱除,烟气蒸发干燥技术分为主烟道烟气蒸发技术、旁路烟道烟气蒸发技术2种,但缺点是投资较大、占地面积较大、影响锅炉热效率等,目前仍未见长期稳定运行的案例。因此,现阶段稳定性高、适应性强的末端固化方法仍为蒸发结晶技术。